
A Comparison of Techniques for Scheduling Fleets of Earth-Observing
Satellites

Al Globus
CSC

NASA Ames

James Crawford
RIACS

NASA Ames

Jason Lohn
NASA Ames

Anna Pryor
NASA Ames

Abstract

We have run experiments comparing fourteen tech-
niques on a realistically-sized model of the Earth-
Observing Satellite (EOS) scheduling problem. This
problem requires taking as many high-priority observa-
tions as possible while satisfying complex constraints.
We compared iterated sampling (ISAMP - basically
random search), heuristic-biased stochastic sampling
(HBSS) with contention heuristics and multiple vari-
ants of the genetic algorithm, simulated annealing,
squeaky wheel optimization and stochastic hill climb-
ing on a three satellite, one week, 6,000+ observation
scheduling problem. Except for HBSS, the search was
conducted in permutation space rather than schedule
space. Simulated annealing with ’temperature depen-
dent’ random swap mutation operators was the clear
winner. Random mutation operators outperformed
squeaky mutation operators. HBSS with contention
heuristics was hundreds of times slower than all other
techniques and produced much worse schedules than
all techniques except ISAMP. This is consistent with
results we have seen on smaller problems. For the
EOS scheduling problem, at least among the techniques
tested, simple, fast and stupid with learning signifi-
cantly outperforms complex, slow and smart without
learning.

Introduction
A growing fleet of scientific, military, and commercial
Earth observing satellites (EOS) circles the globe. Al-
though there are approximately 60 EOS satellites in
orbit today, image collection is nearly always scheduled
separately for each satellite with manual coordination,
if any. Some studies (Globus et al. 2002) (Rao, Soma,
& Padmashree 1998) have suggested that automatic co-
ordination of multiple satellites can be beneficial, but
the best scheduling techniques to use is not clear.

Computational scheduling techniques have been ap-
plied to the EOS scheduling problem by several authors,
including:
1. Sherwood et al. (Sherwood et al. 1998) used AS-

PEN, a general purpose scheduling system, to auto-
mate NASA’s EO-1 satellite.

2. Potter and Gasch (Potter & Gasch 1998) described a
clever algorithm for scheduling the Landsat 7 satellite

featuring greedy search forward in time with fixup to
free resources for high priority images.

3. Lamaitre’s group has examined EOS scheduling is-
sues including sharing a single satellite among mul-
tiple users and comparing multiple techniques. See,
for example, (Lamaitre, Verfaillie, & Bataille 1998),
(Bensana, Lemaitre, & Verfaillie 1999) and (Lamaitre
et al. 2000).

4. Wolfe and Sorensen (Wolfe & Sorensen 2000) com-
pared three algorithms, including the genetic algo-
rithm, on the window-constrained packing problem,
which is related to EOS scheduling. They found that
the genetic algorithm produced the best schedules,
albeit at a significant CPU cost.

This study compares fourteen EOS scheduling tech-
niques on a realistically-sized model problem. In partic-
ular, we compare simulated annealing, hill climbing, the
genetic algorithm, squeaky wheel optimization, iterated
sampling (ISAMP) and heuristic-biased stochastic sam-
pling (HBSS) (Bresina 1996) with contention heuristics
(Frank et al. 2002). In the next section we describe the
scheduling problem and our model. A description of the
scheduling techniques follows. The nature and results
of our computational experiments are then presented
along with analysis.

EOS Scheduling Problem

In this section we first describe the EOS scheduling
problem as perceived by satellite operators and devel-
opers. Then we describe the model of the problem used
in this experiment.

EOS scheduling attempts to take as many high-
priority observations as possible within a fixed period
of time on a fixed set of satellite-born sensors. For ex-
ample, the Landsat 7 satellite scheduler is considered to
have done a good job if 250 observations are made each
day. There are generally far more than 250 observation
requests. EOS scheduling is complicated by a number
of important constraints. Potin (Potin 1998) lists some
of these constraints as:

1. Revisit limitations. A target must be within sight of
the satellite; and EOS satellites travel in fixed orbits,



usually about 800 km up and 100 minutes per orbit.
These orbits pass over any particular place on Earth
at limited times so there are only a few observation
windows (and sometimes none) for a given target.

2. Time required to take each image. Most Earth ob-
serving satellites take a one dimensional image and
use the spacecraft‘s orbital motion to sweep out the
area to be imaged. For example, a Landsat image
requires 24 seconds of orbital motion.

3. Limited on-board data storage. Images are typically
stored on a solid state recorder (SSR) until they can
be sent to the ground.

4. Ground station availability. The data in the SSR
is sent to the ground (called SSR dumps) when the
satellite passes over a ground station. Ground station
windows are limited as with any other target.

5. Transition time between look angles (slewing). Some
instruments are mounted on motors that can point
side-to-side (cross-track).

6. Power and thermal control.
7. Coordination of multiple satellites.
8. Cloud cover. Some sensors cannot see through

clouds. Not only do clouds cover much of the Earth
at any given time, but some locations are nearly al-
ways cloudy.

9. Stereo pair acquisition or multiple observations of the
same target by different sensors or the same sensor
at different times.

Our model problem implements all these constraints
except the last two. The model problem consists of
three satellites in Sun-synchronous orbits (orbits in
which the equator is crossed at the same local time each
orbit) for one week. The satellites are spaced ten min-
utes apart. Each satellite carries one sensor mounted
on a cross-track slewable motor that can point up to 24
degrees to either side of nadir (nadir is straight down)
and turns one degree in two seconds. Each satellite has
an SSR capable of storing 50 arbitrary units.

We model power and thermal constraints using so
called duty cycle constraints, the approach taken by
NASA’s Landsat 7 satellite. A duty cycle constraint
requires that the sensor not be turned on for longer
that a maximum time within any interval of a certain
length. This insures conformance with power, thermal,
and other physical constraints on the spacecraft. Our
model problem uses the Landsat 7 duty cycles. Specif-
ically, a sensor may not be used for more than:

1. 34 minutes in any 100 minute period,
2. 52 minutes in any 200 minute period, or
3. 131 minutes in any 600 minute period.

There is one ground station in Alaska. Whenever a
satellite comes within sight of the ground station it is
assumed to completely empty it‘s SSR, which is then
available for additional observation storage. There are

approximately 75 SSR dumps per spacecraft during the
week. Since some orbits are over oceans and all targets
are on land, some SSR dump opportunities are wasted
on an empty SSR.

6300 observation targets were randomly generated on
land. Of these, 6114 were observable by at least one
satellite during the one week scheduling period. The
targets are assumed to be at the center of a rectangle
that requires 24 seconds of satellite motion to image.
Each observation requires one, three, or five arbitrary
storage units (evenly distributed) on the SSR. Each ob-
servation was assigned a priority from one to six evenly
spaced in 0.1 increments. Each observation has 2-24
windows, times when a satellite is within view of the
observation‘s target. Orbits and windows were deter-
mined by the free version of the Analytical Graphics
Inc.’s Satellite Tool Kit, also known as the STK (see
www.stk.com).

The fitness (quality) of each schedule is determined
by a weighted sum (smaller numbers indicate better
fitness):

F = wp

∑
Ou

Po + wsS + waA (1)

where F is the fitness, Ou is the set of unscheduled
observation, Po is the priority of an observation, S is the
total time spent slewing, A is the sum of the off-nadir
pointing angle for all scheduled observations, w stands
for weight, wp = 1, ws = 0.01, and wa = 0.00137.
Note that the weights favor the priority of unscheduled
observations over pointing and slewing time objectives.

Scheduling Techniques
This study compares fourteen search techniques applied
to the EOS scheduling problem. The simplest tech-
niques were simulated annealing, hill climbing, two vari-
ants of the genetic algorithm, and ISAMP (essentially
random search) taking random steps. By using a more
intelligent mutation operator, these algorithms (except
ISAMP) become variants of squeaky wheel optimization
(Joslin & Clements 1999). Finally, we examined HBSS
(Bresina 1996) with contention heuristics (Frank et al.
2002) where a great deal of processing is devoted to de-
termining the order in which observations are placed in
schedule timelines.

We represent a schedule as a permutation or arbi-
trary, non-temporal ordering of the observations. With
the exception of HBSS, the observations are scheduled
one at a time in the order indicated by the permutation.
In psuedo-code:
1. int[] permutation = permutation of the integers 1-

numberOfObservations
2. for(int i = i; i != numberOfObservations; i++)
(a) schedule observation permutation[i] if it does not

violate any constraints
This allows us to search in permutation space (Syswerda
& Palmucci 1991) rather than schedule space, as is



somewhat more common. A simple, deterministic,
one-observation scheduler assigns resources to observa-
tions in the order indicated by the permutation. This
produces a set of timelines with all of the scheduled
observations, the time they were taken, and the re-
sources (SSR, sensor, pointing angle) used. The one-
observation scheduler assigns times and resources to ob-
servations using earliest-first scheduling heuristics while
maintaining consistency with sensor availability, on-
board memory (SSR) and slewing constraints. If an
observation cannot be scheduled without violating the
current constraints (those created by scheduling obser-
vations from earlier in the permutation), the observa-
tion is left unscheduled.

Simple earliest-first scheduling starting at time = 0
had some problems. We discovered that the algo-
rithm works better if, for each observation, ’earliest-
first’ starts at some random initial time rather than
at time = 0. This time is, in general, different for
each observation. If the observation cannot be sched-
uled between the initial time the end of time, the al-
gorithm starts at time = 0 and continues searching for
a constraint-free window until the observation is sched-
uled or the initial time is reached. The time each ob-
servation is scheduled (or, if unscheduled, what time
’earliest-first’ search started) is stored along with the
permutation, is preserved by mutation and crossover,
and is used as the starting point for the one-observation
scheduler operating on modified versions of the current
permutation. The extra scheduling flexibility may ex-
plain why this approach works better than earliest-first
starting at time = 0.

Constraints are enforced by representing sensors,
slew-motors and SSRs as timelines. Scheduling an ob-
servation causes timelines to take on appropriate values
(i.e., in use for a sensor, slew motor setting, amount of
SSR memory available) at different times. These time-
lines are checked for constraint violations as the one-
observation scheduler attempts to schedule additional
observations.

The simplest algorithm tested was ISAMP, which is
essentially a random search. With ISAMP, each sched-
ule is generated from a random permutation with ran-
dom start times for the one-observation scheduler.

The next class of algorithms tested were the ’evo-
lutionary’ search techniques, which we define here as
those that start with random permutations and gener-
ate new permutations with mutation and/or crossover.
Unlike ISAMP, these algorithms learn in the sense that
they use past experience and gradually improve the
schedules generated. The algorithms tested were:

1. Stochastic hill climbing, which starts with a single
randomly generated permutation. This permutation
(the parent) is repeatedly mutated to produce one
new permutation (a child) which, if the child repre-
sents a more fit schedule than the parent, it replaces
the parent.

2. Simulated annealing, which is similar to hill climbing

except less fit children can replace the parent with
a probability that the depends on an artificial tem-
perature. The temperature starts at 100 (arbitrary
units) and is multiplied by 0.92 every 1000 children
(100,000 children are generated per run).

3. A steady-state tournament selection genetic algo-
rithm with population size 100. The individual to
replace is chosen by a tournament from the whole
population where the least fit is replaced. Tourna-
ment size is always two.

4. A generational elitist genetic algorithm. The popu-
lation size is 110 where the 10 best individuals are
copied into the next generation. Parents are chosen
by tournament (size = 2).

Each search technique was tested with three mutation
operators:

1. Random swap. Two permutation locations are cho-
sen at random and the observations are swapped,
with 1-15 swaps (chosen at random) per mutation.
Earlier experiments (Globus et al. 2003) determined
that allowing more than one swap improved schedul-
ing (see Table 2).

2. Temperature-dependent swap. Here the number of
swaps (1-15) is still chosen at random but with a bias.
Early in evolution a larger number of swaps tend to
be used, and later in evolution fewer swaps are per-
formed. This is analogous to the ’temperature’ de-
pendent behavior of simulated annealing. The choice
of the number of swaps is determined by a weighted
roulette wheel where the weights vary linearly as evo-
lution proceeds starting at n and ending at 16 − n
where n is the number of swaps. Earlier experiments
tried fewer swaps early in evolution and more swaps
later. This didn’t work as well.

3. Squeaky shift. This mutation operator implements
squeaky wheel optimization. The mutator shifts 1-15
(chosen randomly) ’deserving’ observations earlier in
the permutation. Early in the permutation an ob-
servation is more likely to be scheduled since fewer
other observations will have been scheduled to cre-
ate additional constraints. Each observation to shift
forward is chosen by a tournament of size 50, 100,
200, or 300 (chosen at random each time). The ob-
servation is always chosen from the last half of the
permutation. The position-to-shift-in-front-of is cho-
sen by a tournament of the same size (each time) and
is guarrenteed to be at a location at least half way to
the front of the permutation (starting at the ’deserv-
ing’ observation). The observation most deserving to
move earlier in the permutation is determined by the
following characteristics (in order):

(a) unscheduled rather than scheduled
(b) higher priority
(c) later in the permutation

The position-to-shift-in-front-of tournament looks for
the opposite characteristics.



We have tested a number of other mutation operators
but the ones examined in this experiment performed the
best. See (Globus et al. 2003) and Table 2 for some of
these data.

In the case of the genetic algorithms half of all chil-
dren are created by mutation and the other half by
crossover. The crossover operator is position-based
crossover (Syswerda & Palmucci 1991). Roughly half of
the permutation positions are chosen at random (50%
probability per position). The observations in these po-
sitions are copied from the father to the same permuta-
tion location in the child. The remaining observations
fill in the child‘s other permutation positions in the or-
der they appear in the mother.

The final algorithm tested was HBSS with contention
heuristics. HBSS does not use the permutation repre-
sentation or the one-observation scheduler. The ob-
servations are still scheduled one at a time, but the
next observation to schedule is chosen by a weighted
roulette wheel. For a given observation, the window
(time when a satellite is in view of the target) to use
is chosen by another weighted roulette wheel. Observa-
tions and windows are assigned dynamic weights which
depend on the observations that have been scheduled
(or found to be unschedulable) and windows that do not
violate any constraint except the duty cycle constraint.
The duty cycle constraint is not considered by the con-
tention heuristics for performance reasons. If the chosen
window is found to violate a duty cycle constraint it is
discarded and another window chosen. In general, the
heuristics seek to schedule the most difficult-to-schedule
observations first, and choose the observation window
that interferes with the fewest other observations. See
(Frank et al. 2002) for details.

Experiment
To find the best algorithm for the model problem we
compared a total of fourteen techniques. These were
ISAMP, HBSS, and every combination of four search
techniques – hill climbing, simulated annealing, steady
state GA, and generational GA – with three mutation
operators – 1-15 random swaps, 1-15 temperature de-
pendent swaps, and 1-15 squeaky shifts. Except for
HBSS, 32 jobs with identical parameters (except the
random number seed) were run for each algorithm.
Each job generated approximately 100,000 schedules
(the GA runs generated slightly more). On one Athlon
processor of our Linux cluster these jobs took 2-3 hours
each.

HBSS is significantly slower than the other tech-
niques. By using our entire cluster, we were able to run
80 HBSS jobs of 10,000 schedules each, the equivalent of
eight 100,000 schedule jobs. Each of these smaller jobs
required about 69 hours on the same Athlon processor,
so HBSS with contention heuristics is a couple hundred
times slower than the other techniques. HBSS also re-
quires far more memory than the other techniques to
maintain data structures for incremental updates of the
weights. Because the HBSS data are different they are

not included in tables and figures to avoid the impres-
sion the data are directly comparable. However, the
HBSS results were so poor (barely better than ISAMP)
that the difference in data size makes little difference to
our conclusions.

Table 1 compares mean fitness. Nearly all of the dif-
ferences were statistically significant by both t-test and
ks-test, with confidence levels usually far above 99%.
We see that simulated annealing with temperature de-
pendent swaps (SaTd) performs best with algorithms
using simulated annealing, hill climbing, temperature
dependent swaps, and random swaps clearly leading.
The message seems to be modify one schedule, take
random steps, and restrict steps more and more as evo-
lution proceeds. Interestingly, although temperature
dependent swaps won with simulated annealing and hill
climbing, random swaps was superior for both genetic
algorithms. Table 2 shows similar results with slightly
different techniques on a smaller but related problem.
We have had similar results on other problems as well.

Simulated annealing and hill-climbing with the
squeaky shift operator were next. These outperform
the genetic algorithm regardless of mutation operator.
Again, within the genetic algorithms the squeaky shift
mutator performs the worst.

ISAMP, as one might expect for random search, per-
formed the worst. However, the very best HBSS sched-
ule (out of 800,000 generated) was only a little bit better
than the ISAMP mean.

The small standard deviations for all techniques sug-
gests that all runs for a given technique get about the
same fitness. Thus, even if the fitness landscape is
multi-modal all the minima must be about the same.
Figure 1, which shows the breadth of each fitness distri-
bution over 32 runs, confirms this view. For this reason,
we suspect that this problem requires mostly exploita-
tion, rather than exploration, which also explains the
poor GA results. Evolutionary change is spread out
over the GA populations rather than concentrated on
a single individual as for simulated annealing and hill
climbing.

The squeaky shift mutator‘s performance relative to
random swaps suggests that it is smart in the wrong
way. In preliminary experiments we also tried swap-
ping, rather than shifting, observations and forcing ob-
servations to be swapped into certain parts of the per-
mutation (see Table 2). The shift operator performed
the best, but still not as well as the random swap mu-
tator (data unpublished). If random outperforms in-
telligent, then clearly the intelligence is being applied
in the wrong way. We do not understand the dynam-
ics of permutation-space scheduling in any fundamental
way, and we don’t even know if the dynamics are funda-
mentally similar for different problems. Until a better
understanding is reached, the random swap operators
– with a decrease in the number of swaps as evolution
proceeds – appear best.

Figures 2-4 show that the individual objectives in
the weighted sum of Equation 1 display much the same



trend as the fitness. Simulated annealing and hill climb-
ing with random swaps beats squeaky shifts and the
genetic algorithm is worse for almost every objective
of the fitness function. However, notice that the range
of mean off-nadir pointing is very large suggesting that
this measure made little difference, perhaps because the
weight was too low.

It is difficult to say precisely why HBSS did so poorly
compared to simulated annealing and the other tech-
niques. Perhaps because the essence of the problem is
scheduling the observations in the proper order. HBSS
attempts to discover this order using the contention
heuristics. Perhaps the heuristics are simply the wrong
ones. However, perhaps the ability of simulated anneal-
ing and the other techniques to discover, and preserve,
partial orders of observations to schedule is the essence
of their superiority.

Summary
We compared fourteen different techniques for schedul-
ing EOS fleets on a realistically-sized model problem.
Simple techniques such as simulated annealing and hill
climbing outperformed the genetic algorithm and HBSS
with contention heuristics. Simple random swap muta-
tion outperformed more ’intelligent’ mutation. Reduc-
ing the number of random swaps as evolution proceeds
also improves performance. The most ’intelligent’ algo-
rithm with no learning, HBSS with contention heuris-
tics, barely outperformed random scheduling (ISAMP)
in spite of requiring far more computational resources.
Although we examined only one problem here, we have
seen essentially the same results on other problems
in this class. For some of this data see (Globus et
al. 2003). Apparently, taking advantage of previous
scheduling attempts, as simulated annealing, hill climb-
ing, and the genetic algorithm does, has more value
than large amounts of computation to choose just the
right move to make. For this application and these
techniques, fast and stupid with a little learning out-
performs smart.

Acknowledgements
This work was funded by NASA’s Computing, In-
formation, & Communications Technology Program,
Advanced Information Systems Technology Program
(contract AIST-0042), and by the Intelligent Sys-
tems Program. Thanks also to Bonnie Klein for re-
viewing this paper and to Jennifer Dungan, Jeremy
Frank, Robert Morris and David Smith for many help-
ful discussions. Finally, thanks to the developers of
the excellent Colt open source libraries for high per-
formance scientific and technical computing in Java
(http://hoschek.home.cern.ch/hoschek/colt).

References
Bensana, E.; Lemaitre, M.; and Verfaillie, G. 1999.
Earth observation satellite management. Constraints
4(3):293–399.

Bresina, J. 1996. Heuristic-biased stochastic sampling.
In Proceedings of the Thirteenth National Conference
on Artificial Intelligence.
Frank, J.; Jonsson, A.; Morris, R.; and Smith, D. 2002.
Planning and scheduling for fleets of earth observing
satellites. In Proceedings of the 6th International Sym-
posium on Artificial Intelligence, Robotics, Automa-
tion and Space 2002.
Globus, A.; Crawford, J.; Lohn, J.; and Morris, R.
2002. Scheduling earth observing fleets using evo-
lutionary algorithms: Problem description and ap-
proach. In Proceedings of the 3rd International NASA
Workshop on Planning and Scheduling for Space.
Globus, A.; Crawford, J.; Lohn, J.; and Pryor, A.
2003. Scheduling earth observing satellites with evo-
lutionary algorithms. In Conference on Space Mission
Challenges for Information Technology (SMC-IT).
Joslin, D. E., and Clements, D. P. 1999. Squeaky
wheel optimization. Journal of Artificial Intelligence
Research 10:353–373.
Lamaitre, M.; Verfaillie, G.; Frank, J.; Lachiver, J.;
and Bataille, N. 2000. How to manage the new gen-
eration of agile earth observation satellites. In Pro-
ceedings of the International Symposium on Artificial
Intelligence, Robotics and Automation in Space.
Lamaitre, M.; Verfaillie, G.; and Bataille, N. 1998.
Sharing the use of a satellite: an overview of methods.
In SpaceOps 1998.
Potin, P. 1998. End-to-end planning approach for
earth observation mission exploitation. In SpaceOps
1998.
Potter, W., and Gasch, J. 1998. A photo album of
earth: Scheduling landsat 7 mission daily activities.
In SpaceOps 1998.
Rao, J. D.; Soma, P.; and Padmashree, G. S. 1998.
Multi-satellite scheduling system for leo satellite oper-
ations. In SpaceOps 1998.
Sherwood, R.; Govindjee, A.; Yan, D.; Rabideau, G.;
Chien, S.; and Fukunaga, A. 1998. Using aspen to
automate eo-1 activity planning. In Proceedings of the
1998 IEEE Aerospace Conference.
Syswerda, G., and Palmucci, J. 1991. The applica-
tion of genetic algorithms to resource scheduling. In
Proceedings of the Fourth International Conference on
Genetic Algorithms, 502–508.
Wolfe, W. J., and Sorensen, S. E. 2000. Three schedul-
ing algorithms applied to the earth observing systems
domain. Management Science 46(1):148–168.



Search technique mutation operator abbreviation mean fitness fitness std. dev.
simulated annealing temperature dependent swaps SaTd 9205 20

hill climbing temperature dependent swaps HcTd 9310 21
simulated annealing random swaps SaSr 9311 19

hill climbing random swaps HcSr 9368 25
simulated annealing squeaky swaps SaSs 9489 19

hill climbing squeaky swaps HcSs 9507 24
generational GA random swaps GgSr 9700 38
steady state GA random swaps GsSr 9700 25
steady state GA temperature dependent swaps GsTd 9741 31
generational GA temperature dependent swaps GgTd 9834 24
generational GA squeaky swaps GgSs 9964 53
generational GA squeaky swaps GsSs 10010 46

ISAMP random ISAMP 10463 11

Table 1: Scheduling algorithms tested ordered by mean fitness. Smaller values indicate better fitness. HBSS is left
out since processing time did not permit 32 HBSS runs of 100,000 schedules each. The best HBSS fitness in the
equivalent of 8 runs was 10442, a little better than the ISAMP mean but worse than the worst run for all other
techniques. The closest worst-run fitness value was 10120 (222 better than the HBSS best value) for the steady-state
genetic algorithm with squeaky shifts (GsSs).

search algorithm transmission operators mean fitness
SA 1-9 swap 2171
SA 1 swap 2354

HC 5 restarts 1-9 swaps 2539
HC 5 restarts 1 swap 2564
HC 0 restarts 1 swap 2575

SA 1 squeaky swap 2772
SA 1 placed squeaky swap 2814
HC 1 squeaky swap 2868

GA population = 100 crossover and 1 swap 3007

Table 2: Results from a somewhat different problem with a different, but related, set of search techniques. Note that
the overall results are similar. Here the problem has two satellites and 4000+ observations with SSR size, slewing
range and times, and other aspects different from the model that generated Table 1. Details can be found in (Globus
et al. 2003).



Figure 1: Comparing fitness (vertical axis) for 32 runs. The boxes indicate the second and third quartiles. The line
inside the box is the median and the whiskers are the extent of the data. Outliers are represented by small circles.
Smaller numbers indicate better fitness.

Figure 2: Sum of the priority of unscheduled observations (
∑

Ou
Po from Equation 1).



Figure 3: Mean slewing time needed for each scheduled observation (mean of S from Equation 1).

Figure 4: Mean off-nadir pointing angle needed for each scheduled observation (mean of A from Equation 1).


